On the Regularity of Multivariate Hermite Interpolation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Algebraic Geometry for Multivariate Hermite Interpolation

This paper uses some well known theorems of algebraic geometry to characterize polynomial Hermite interpolation in any dimension. Efficient numerical algorithms are presented for interpolatory curve fits through points in the plane, surface fits through points and curves in space, and in general, hypersuface fits through. points, curves, surfaces, and sub-varieties in n dimensional space. These...

متن کامل

A new non-polynomial solution to multivariate Hermite-Birkhoff interpolation

A new solution to the multivariate Hermite-Birkhoff interpolation problem is presented. The classical approach to this problem consists in constructing the minimum degree polynomial, which coincides with the prescribed function and derivative values at the sample points. Here the interpolant is represented as a truncated Multipoint Taylor (MT) series. A MT series can be regarded as an extension...

متن کامل

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

Hermite Interpolation Outperforms Nyström Interpolation

Hermite interpolation is shown to be much more stable than Nyström interpolation in the context of solving classic Fredholm second kind integral equations of potential theory in two dimensions using panel-based Nyström discretization. AMS subject classification (2000): 31A10,45B05,65D05,65R20.

متن کامل

Quantum Hermite Interpolation Polynomials

Abstract. The concept of Lagrange and Hermite interpolation polynomials can be generalized. The spectral basis of idempotents and nilpotents of a factor ring of polynomials provides a powerful framework for the expression of Lagrange and Hermite interpolation in 1, 2 and higher dimensional spaces. We give a new definition of quantum Lagrange and Hermite interpolation polynomials which works on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2000

ISSN: 0021-9045

DOI: 10.1006/jath.1999.3345